

Geo-Energie Suisse AG Reitergasse 11 CH-8004 Zürich T +41 61 500 07 20 info@geo-energie.ch www.geo-energie.ch

Schweizer Kompetenzzentrum für Tiefengeothermie zur Strom- und Wärmeproduktion

Bassecourt, den 3. Oktober 2025

Medienmitteilung

Geothermie Haute-Sorne: Positive Ergebnisse für die Weiterführung des Projekts und die Entwicklung zukünftiger Vorhaben in der Schweiz

Geo-Energie Jura SA (GEJ) hat die Explorationsphase des Geothermie-Pilotprojekts Haute-Sorne (JU) erfolgreich beendet. Die im Juli in der Tiefbohrung durchgeführten Tests bestätigen, dass die Durchlässigkeit des Gesteins ausreichend gesteigert werden kann, um ein nutzbares geothermisches Reservoir zu schaffen – unter Einhaltung der vorgegebenen seismischen Grenzwerte. Geothermie ist rund um die Uhr verfügbar, verursacht keine CO₂-Emissionen und stellt eine ideale Ergänzung zu anderen erneuerbaren Energien dar.

Die Neubewertung des seismischen Risikos auf Basis der aktuellen Ergebnisse fällt günstiger aus als die Schätzungen, die der Projektbewilligung von 2015 zugrunde lagen. Die ersten beiden Berichte zu den in der Tiefbohrung durchgeführten Tests wurden gestern den Behörden des Kantons Jura übergeben; weitere Berichte folgen in den kommenden Monaten. Diese Unterlagen werden von den unabhängigen, vom Kanton beauftragten Experten aus sicherheitstechnischer Sicht geprüft. Auf Grundlage ihrer fachlichen Bewertungen werden die kantonalen Behörden anschliessend über die Weiterführung des Projekts entscheiden.

Über die Fortführung des Projekts Haute-Sorne hinaus eröffnen die positiven Ergebnisse Perspektiven für weitere geothermische Vorhaben in der Schweiz. Geo-Energie Suisse (GES) plant, in den kommenden Jahren Standorte für Projekte mit einer elektrischen Leistung zwischen 10 und 30 MW zu evaluieren – idealerweise in Kombination mit Wärmeproduktion.

Die Erfahrungen aus der Entwicklung vergleichbarer Projekte im Ausland zeigen, dass Stromgestehungskosten von unter 15 Rp./kWh künftig realistisch sind. Diese Wirtschaftlichkeit verbessert sich zusätzlich, wenn Strom- und Wärmeerzeugung kombiniert werden.

Geothermie liefert grundlastfähige Energie, die rund um die Uhr verfügbar ist und keine CO₂-Emissionen verursacht. Aufgrund dieser Eigenschaften stellt geothermisch erzeugter Strom eine ideale Ergänzung zu anderen erneuerbaren Energien dar.

Schlussfolgerung

Die positiven Ergebnisse ermöglichen es, den von den kantonalen Behörden eingeleiteten Prüf- und Freigabeprozess für die nächste Projektphase in Haute-Sorne fortzuführen.

Darüber hinaus eröffnen die Resultate die Möglichkeit, neue Projekte auf Basis des Multi-Stimulation-Konzepts sowohl in der Schweiz als auch in Europa zu entwickeln. Damit rücken grössere Projekte sowie Standorte in der Nähe grösserer urbaner Zentren verstärkt in den Fokus.

Nächste Schritte

In Haute-Sorne wird GEJ dem Kanton und den beauftragten Experten in den kommenden Monaten alle erforderlichen Berichte zur Verfügung stellen, um eine vollständige Prüfung der Explorationsphase zu ermöglichen.

Parallel dazu plant Geo-Energie Suisse (GES), Standorte in der Schweiz für Projekte mit einer elektrischen Leistung von 10 bis 30 MW zu evaluieren – idealerweise mit gleichzeitiger Wärmeproduktion für mittelgrosse bis grosse Fernwärmenetze.

Perspektiven für eine Industrialisierung zukünftiger Projekte

Als Referenz dient das "Cape"-Projekt von Fervo Energy (Utah), das eine geothermische Kraftwerkskapazität von rund 500 MW elektrisch vorsieht, erschlossen über mehr als 100 Bohrungen. Das erste 100-MW-Modul soll im Frühjahr 2026 ans Netz gehen; über 20 Tiefbohrungen sind bereits abgeschlossen.

Dank technologischer Fortschritte beim Bohren in Granit in den USA können dort Bohrungen in etwa 20 Tagen zu Kosten von rund 5 Mio. USD fertiggestellt werden – das ist etwa viermal schneller und günstiger als beim Explorationsbohrloch in Haute-Sorne.

Auch wenn sich die technischen Rahmenbedingungen unterscheiden und nicht alle amerikanischen Technologien 1:1 auf Europa übertragbar sind, ist das Potenzial für grossflächige Kostenreduktionen erheblich.

Kontakt:

Peter Meier, CEO Geo-Energie Suisse AG, T +41 79 248 48 65 Olivier Zingg, Directeur Geo-Energie Jura SA, T +41 79 321 43 20 (abwesend bis 6. Oktober)

Geo-Energie Suisse AG ist das Schweizer Kompetenzzentrum für tiefe Geothermie zur Strom- und Wärmeerzeugung. Das Unternehmen wurde im November 2010 gegründet. Zu den Gründungsmitgliedern gehören Stadtwerke sowie regionale Energieversorger aus der ganzen Schweiz (aet, EBL, ewz, EOS, ewb, GVM, iwb). Die Geo-Energie Suisse AG beschäftigt rund 20 Mitarbeitende und wird punktuell von externen Spezialisten unterstützt.

Geo-Energie Jura SA wurde 2015 gegründet. Ihre Aktionäre sind Geo-Energie Suisse AG, ebl, ewb und ewz. Ziel der Gesellschaft ist es, das Geothermieprojekt in Haute-Sorne zu realisieren und anschliessend zu betreiben. Aufgrund einer im Juni 2015 zwischen der Gemeinde Haute-Sorne, dem Kanton Jura und Geo-Energie Suisse geschlossenen dreiseitigen Vereinbarung ist die Gesellschaft in der Gemeinde Haute-Sorne ansässig.

Stimulationsversuch Juli 2025

Die Explorationsphase des Geothermie-Pilotprojekts Haute-Sorne wurde mit dem Stimulationsversuch im Juli 2025 abgeschlossen. Ziel dieser Arbeiten war es, nachzuweisen, dass sich die Permeabilität des Gesteins ausreichend erhöhen lässt, um ein geothermisch nutzbares Reservoir zu schaffen – und dies unter Einhaltung der festgelegten seismischen Grenzwerte. Während des sechstägigen Tests wurden insgesamt 430 m³ Wasser in einer Tiefe von 3'800 m mit Oberflächendrücken von bis zu 270 bar injiziert. Die mikroseismische Reaktion des Untergrunds wurde mit direkt im Bohrloch installierten Seismometern aufgezeichnet. Die unmittelbare Nähe der Sensoren zum Stimulationsbereich ermöglichte eine sehr hohe Empfindlichkeit des Messsystems. Insgesamt wurden rund 3'400 mikroseismische Ereignisse erfasst – eine umfangreiche Datengrundlage für die Beurteilung der seismischen Reaktivität des Gesteinskörpers. Parallel dazu überwachte der Schweizerische Erdbebendienst (SED) der ETH Zürich im Auftrag des Kantons unabhängig die Oberflächenseismizität, um den Behörden und der Öffentlichkeit verlässliche, unabhängige und zeitnah verfügbare Informationen bereitzustellen. Dieses kombinierte Netzwerk aus GEJ- und SED-Sensoren bildet die Grundlage des Ampelsystems im seismischen Überwachungs- und Risikomanagementplan von GEJ. Während des Tests registrierte das Netzwerk lediglich die vier stärksten Ereignisse mit einer lokalen Magnitude von ML 0.3 – deutlich unterhalb der menschlichen Wahrnehmungsschwelle.

Auswertung der Ergebnisse und Kommunikation

Am 2. Oktober 2025 hat GEJ den kantonalen Behörden des Jura zwei entscheidende Berichte für die weitere Entwicklung des Pilotprojekts übergeben. Diese Dokumente bilden den Auftakt einer Serie von Berichten, die in den kommenden Monaten eingereicht und vom unabhängigen Expertengremium des Kantons eingehend geprüft werden. Nach Abschluss dieser fachlichen Beurteilung wird das Expertengremium den Behörden eine Empfehlung zur Bewertung des seismischen Risikos des Projekts übermitteln. Dieser strukturierte Prozess stellt sicher, dass in jeder Phase sämtliche Sicherheitsanforderungen erfüllt sind, bevor das Projekt fortgeführt werden darf. Parallel dazu werden die Aktionäre von GEJ die Entscheidungsgrundlagen für das weitere Vorgehen erarbeiten. Eine Entscheidung wird im Frühjahr 2026 erwartet. Die Öffentlichkeit wird transparent und schrittweise über den Projektfortschritt informiert. Diese Medienmitteilung bildet den ersten Schritt. Anlässlich des Europäischen Geothermiekongresses, der nächste Woche in Zürich stattfindet, werden technische Ergebnisse der Fachwelt vorgestellt. Im November ist zudem im Kanton Jura eine Medieninformation im Rahmen der Begleit- und Informationskommission (CSI) vorgesehen.

Wichtigste Ergebnisse der ersten beiden eingereichten Berichte

- In der Tiefe des Reservoirs wurden natürliche, offene Kluftsysteme mit geringer Permeabilität identifiziert. Diese Klüfte können mit den vorgesehenen Drücken hydraulisch stimuliert werden. Die beobachteten geomechanischen Prozesse entsprechen den Resultaten aus dem unterirdischen Bedretto-Labor sowie dem FORGE-Projekt in Utah. Die permanente Permeabilität des Gesteins konnte dabei um mehr als den Faktor 100 gesteigert werden.
- In einer Tiefe von 4'000 m wurde eine Temperatur von 135 °C gemessen; für 5'000 m wird eine Temperatur von rund 168 °C prognostiziert. Der mittlere geothermische Gradient von 31,5 °C/km in Haute-Sorne liegt damit im schweizerischen Durchschnittsbereich.
- Die stimulierte Kluftfläche nimmt wie erwartet mit zunehmendem Injektionsvolumen zu, analog zu Beobachtungen aus anderen Projekten.
- Auf Basis des Multi-Stimulationskonzepts und unter Einhaltung der Grenzwerte für induzierte Seismizität und seismisches Risiko kann pro stimuliertem Bohrlochsegment eine ausreichend große Wärmeaustauschfläche geschaffen werden. Derzeit sind pro Bohrung 30 Stimulationen geplant, um die für einen wirtschaftlichen Betrieb erforderlichen Zirkulationsraten zu erreichen.
- Die seismische Reaktivität des Gesteins in Haute-Sorne ist mehr als 60-mal geringer als jene im Basler Geothermieprojekt. Entsprechend sind auch die seismischen Risiken deutlich niedriger als in der Risikostudie von 2015, die konservativ von einer mit Basel vergleichbaren Reaktivität ausgegangen war und Grundlage der damaligen Projektbewilligung war

⁻⁻⁻⁻⁻

 $^{{}^{1}\,\}underline{\text{http://www.seismo.ethz.ch/de/monitoring/special-networks/geothermal-energy-haute-sorne/Monitoring/special-networks/geothermal-energy-haute-sorne/monitoring/special-networks/geothermal-energy-haute-sorne/monitoring/special-networks/geothermal-energy-haute-sorne/monitor-networks/geothermal-ener$

² <u>https://www.europeangeothermalcongress.eu/</u>

³ https://www.duglab.ethz.ch/en/home/

https://www.geo-energie.ch/2021/01/21/durchbruch-f%C3%BCr-die-tiefengeothermie/

⁴ https://www.utahforge.com/

https://www.utahforge.com/modeling-and-simulation-forum-9-recording/

⁵ https://www.geo-energie.ch/tiefengeothermie/